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N U M E R I C A L  A N D  A S Y M P T O T I C  S T U D Y  O F  T H E  T W O - D I M E N S I O N A L  P R O B L E M  

OF T H E  H Y D R O E L A S T I C  B E H A V I O R  OF A F L O A T I N G  P L A T E  IN  W A V E S  

A. A.  Kor obk in  UDC 532.59:539.3:534.1 

The problem of the behavior of a floating elastic plate in waves is solved numerically. The 
normal mode method is used. For a fluid of finite depth, the hydrodynamic coefficients are 
obtained in explicit form. Numerical results are compared with experimental data for the stress 
distribution in the plate and also with numerical results of other authors. The results are in 
good agreement for not very short waves. For incident waves whose wavelength is comparable 
with the length of the plate, a long-wave approximation of the solution is proposed. Within the 
framework of this approximation, the solution is given in analytical form. 

We consider the two-dimensional linear problem of a floating elastic plate in waves. The length of the 
isotropic plate is 2a and its thickness is h, and h/a << 1. A fluid laver of finite depth H is bounded from 
below by an impermeable bottom. Ttm upper boundary of the fluid consists of a free surface and the surface 
of the floating plate. Vibrations of the plate are generated by a plane surface wave of small amplitude. The 
problem is to determine the deflection of the plate, the stress distribution in it, and the transmission and 
reflection coefficients of the incident wave as functions of the wavelength and the parameters of the plate. 

This problem has been studied experimentally and numerically [1, 2]. In the experiments, plates with 
dimensions 10.0 • 0.5 m [1] and 50 • 5 m [2] were placed in a narrow tank. In this case, the fluid flow induced 
by interaction between the incident plane wave and the floating plate can be approximately considered two- 
dimensional (which does not change across the plate) and the plate can be treated as an Euler free-free 
beam. In tim numerical calculations, the normal mode method [1] and the method of a boundary integral 
equation [2] were used. In the latter method, the origimfl linear problem is reduced using Green's function 
to a two-dimensional (one-dimensional in the plane case) Fredhohn integral equation for the distribution of 
the hydrodynamic pressure on the plate. This integral equation is solved numerically. In tim nornml mode 
method [1], the beam deflection is represented as a superposition of its free vibration forms in air. The 
interaction between the beam and the fluid is described by an added-mass matrix, and the added masses are 
calculated for each vibration mode of the beam. This matrix plays a key role in the normal mode method. If 
the matrix is known, the problem reduces to simple calculations using explicit formulas. In [1], the elements 
of the matrix are determined by solving the hydrodynamic part of the problem using the method of flow 
domain decomposition. The calculation results in [1, 2] are in good agreement with experimental da ta  for 
long incident waves. There is, however, a considerable discrepancy for short waves. 

The method of flow domain decomposition was also used in [3, 4]. A disadvantage of this method is 
that  it cannot be extended to the case of an infinitely deep fluid. At the same time, this method is effective 
for studying the behavior of a floating plate whose draft is comparable with the depth of the fluid layer. 

The aim of the present paper is a comparison of the numerical results obtained by the direct normal 
mode method, in which the matrix elements axe calculated explicitly, with the experimental da ta  of [1, 2], 
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numerical calculations [1-4], and asymptot ic  formulas of the long-wave approximation. 
At the present  time, there are projects of very large floating structures (airports and islands), most of 

which are based on the concept of a floating plate. This structure is easier to build from s tandard  elements. 
It  is stable and does not require powerful holding devices [5]. The  giant dimensions of the real structure 
make full-scale experimental  studies of its behavior difficult. Results of the laboratory experiments [1, 2] can 

t)e applied to the real structures, but  one cannot  guarantee that  all essential similarity criteria are satisfied. 
In this situation, it is of special importance to s tudy the hydroelastic behavior of floating plates by both  
numerical and analytical methods and to compare the results with the data of laboratory experiments.  Such 
studies help to refine the models and their range of applicability. 

F o r m u l a t i o n  o f  t h e  P r o b l e m .  We s tudy the hydroelastic behavior of a floating plate (Fig. 1) within 
the framework of the linear theory. The  draft  of the plate d is assumed to be small in comparison with its 
length 2a and tile depth  of the fluid H.  Time-periodic vibrations of the plate are generated by a surface 
wave of small ampli tude A that  is incident on the plate from right. The  middle of the plate is taken as the 
origin of the Car tes ian  coordinates x 'Oy' .  Here and below, primes refer to dimensional variables. The fluid 
layer ( - H  < y '  < 0) is bounded from below by a horizontal rigid bot tom (y' = - H ) .  The  segments of the 
upper boundary  (y' = 0) of the fluid layer x '  < - a  and x'  > a correspond to the free surface and the segment 
- a  < x' < a corresponds to the floating plate. The plate is t reated ,as an Euler free-free beam. ~,Ve assume 
that tim fluid is ideal, heavy, and incompressible, and the flow is two-dimensional and irrotational.  In the 
linear theory, the  fluid flow is described by the velocity potential ~'(x ' ,  y', t'), and the vibrations of the plate 
are described by the plate deflection w'(x ' ,  t '),  where t ~ is the time. Below we use the following dimensionless 
variables: x'  = ax,  y' = ay, t' = t /w,  ~' = A w a y ,  w' = Aw,  p' = pgAp, and r l' = Aq. Here w is the frequency 
of tile incident wave, p(x,  y, t) is the hydrodynamic pressure, g is the acceleration of gravity, p is the fluid 
density, and the  equation y = r/(x, t), where lxl > 1, describes the evolution of the free surface. We note that,  
in dimensionless variables, the frequency and amplitude of the incident wave are equal to unity. 

In dimensionless variables, the equations of motion and the boundary conditions take tile form 

~,~ + ~.~y = 0 ( - e c  < x < +oc,  - H o  < y < 0), ~y = 0 (y = - H o ) ,  

~ = w~, p ( x ,  o, t )  = - . y ~  - w ( x ,  t) (y = 0, Ixl < 1), 

~ , ~  + Z ~ = z ~  = ~(~, 0, t) (1~1 < 1), ~ = ~ z ~  = 0 (~ = •  

Here 7 = aw2/g,  Ho = H/a ,  a = ",~(d/a), ~ = EJ/ (pga4) ,  E is Young's modulus for the material  of" the 
beam, J = h3/12,  and h is the thickness of the plate. In writing the formula for the coefficient c~, we used 

the equation of balance of forces in the case where the plate is floating on cahn water: mbg = pgd (rob is the 

mass of the beam per unit length). 
We seek a solution of the problem (1) subject to the following conditions on the behavior of the free 

surface as x ---* =t=ec: 

v(x ,  t) ~ cos (~x  + t) + A(+) cos (k~ - t + 5 (+)) (~ -~ + ~ ) ,  

r/(x, t) ~ A (-) cos (kx  + t + 5 (-)) (x ~ - ec ) ,  

(2) 
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where A (+) and A(-) are the amplitudes of the reflected and transmitted waves divided by the amplitude of 
the incident wave, 6 (+) and 6(-) are the corresponding phase shifts, and k is a dimensionless wavenumber that  
is a positive solution of the equation k tanh kilo = % The wavelength of the incident wave A in dimensional 
variables is given by the formula A = 2~ra/k. The quantities A (+), A(-), 5 (+), and 5(-) are not known in 
advance and must be determined along with the flow parameters and the plate deflection w(x, t). The relative 
extensions of elements of the beam ~(x, t) are defined by the formula 

e(x, t) = eswx~(x, t), cs = Ah/(2a2). (3) 

We note that  initial data  are absent in the formulation of the problem (1), (2). It is assumed tha t  
at  long times the flow is time-periodic and independent of the distinctive features of the initial data.  The 
velocity potential ~(x, y, t) corresponding to the developed wave motion of the fluid, the beam deflection 
w(x, t), and the pressure p(x, y, t) are sought in the form 

~(x, y, t) = ~?i(x, y, t) + Re [i exp (it)~(x, y)], w(x, t) = Re [exp (it)W(x)], 
(4) 

1 cosh [k(y + g0)] 
p(x, y, t) = Re [exp (it)P(x, y)], ~i(x, y, t) = - -  sin (kx + t), 

"y cosh (kilo) 

where ~i (x, y, t) is the velocity potential for the incident wave in the case without a plate. The new unknown 
functions ,b(x, y), W(x) ,  and P(x, y) are complex-valued. Substituting Eqs. (4) into (1), we find tha t  

~ x x + ~ y y = O  ( - o c < x < + o o ,  - H 0 < y < 0 ) ;  (5) 

(I)y =- 0 (y = -H0) ;  (6) 

% = (y = 0, [xl > 1); (7) 

�9 y = W ( x ) - e x p ( i k x )  ( y = 0 ,  Ix[ < 1); (8) 

d4W 
~ ~ (1 - cOW -- ~/(I)(x, 0) + exp (ikz) (txl < 1); (9) 

d 2 W d 3 I~V 
dx-- 7 - dx--- ~ = 0 (x = +1); (10) 

P(x,  0) = 7(I)(x, 0) - W(x)  +exp( i kx )  (Ix I < 1). (11) 

The radiation conditions (2) written in terms of the new variables have the forms 

q~(x,O) ,., B(+) e x p ( - i k x )  (x --* +oc), O(x,O) ,.~ B(-) exp(ik.x) (x -~ -oc),  (12) 

where the coefficients B (+) and B(-) need to be determined, and A (+) = ~/B (~:), 5 (+) = - a r g B  (+), and 
5(-) --- a rgB(-) .  

The problem is to determine the reflection A (+) and transmission A(-) coefficients, the amplitude of 
the plate deflection [W(x)l, and the amplitude of the relative extensions E(x) -- mtax Ic(x, t)[ = ~sIwxx(x)l 
using the known parameters of the incident wave and the beam. 

N o r m a l  M o d e  M e t h o d .  According to the normal mode method, the deflection and the distribution 
of the hydrodynamic pressure along the plate are presented in the form of expansions 

oo oo 

w ( z )  = P ( z ,  o) = (Ixl < 1), (13) 
n----I n = l  

where A,~ and Pn are unknown complex coefficients and '~bn(x) are nontrivial real solutions of the spectral 
problem 

1 

%bin V ---- A4%bn ( -1  < z < 1), r = ~b'n"(4-1 ) ---- 0, /~n(x )~bm(x)dx  = 6urn. (14) 

- 1  
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Here A,, are the corresponding eigenvalues, ~$nm = 0 for n r m, and ~nm = 1 for n = m. Eigenfunctions with 
even numbers are even flmctions of x, and eigenfunctions with odd numbers are odd functions of x: 

~bl(x) = V / - ~ x ,  '~b2n+l(x) = D2n+l(sin A2n+lZ -Jr- S 2 n + l  sinh ( A 2 n + I X ) )  , 

~b2(x) = l /x /2 ,  r = D2n (cos A2,,x + S2n cosh (A2,,x)), 

D2n+, : l / V / 1 - c o s  2 A2n+l/cosh2A2n+l, S2n+l = cosA2n+l/coshA2n+i, 

= 1,/v/l+cos  
The eigenvalues A2n (n >~ 2) and A2n+l (n /> 1) are obtained from the dispersion relations tan A2n+l = 
tanh/~2n+l and tan -~2n -= - t a n h  A2n. In addition, kl = A2 = 0. 

Equations (9), (11), and (14) allow us to find the relation between the coefficients A~ and Pn: 

P,, = -g,,An, gn = a - flA~. (15) 

Equations (7), (8), and (11) show that  (I~y - -y~ = -P(x,O) at y = 0. From this condition, the velocity 
potential 'I~(x, y) is written as 

o o  

'~(z,.v) = - ~ P,,~(")(x, y), (16) 

where the functions (I ~(n)(x, y) satisfy Eqs. (5) and (6), the boundary condition on the upper boundary of 
the fluid layer 

r (n) - "y~(") = ~bn(x)H(1 - x 2) (y = 0), 

and the radiation conditions 

(I~(")(x, 0) ,.. b! +) exp(- : ikx)  (x --+ +oc), r ,-. bl[-)exp(ikx ) (x --* -oo). 

If the functions (I~(n)(x, y) and the numbers b~ +) and b (-) are found, the formula 
o o  

and the representation 
o ~  

,~('~)(.,o) = y ~  C,~m~'m(x) (1< < 1) (17) 

with complex coefficients Cnm are valid. We note tha t  these coefficients do not depend on the parameters of 
the beam. 

Substituting (16), (17), and (13) into (11) and using (15), we obtain the following system of algebraic 
equations for the coefficients P,~: 

1 

( 1 -  l~Pn  +')' ~ PmCmn = / ' G ~ ( x )  exp (ikx) dx. (18) 
g n  / 

m =  1 -- 1 

System (18) is solved numerically by tile reduction method if the hydrodynanfic coefficients C,,,, are 
known. Then, tile coefficients An in the expansion of tile deflection in terms of eigenfunctions (13) are 
determined from formulas (15). 

H y d r o d y n a m i c  Coef f ic ien ts .  The functions (I ~(n) (x, y) are given by 

1 f exp (i{x) d~ ~(n)(x'Y) = G j w F ( ~ )  a(~)  - ~ ' 
L 

(19) 
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1 

where ~pF(~) = f ~P,,(x0)exp (--ixo~)dxo, G(~.) = ~ tanh~Ho,  and G(k) = ?. In (19), the integration pa th  L 

-1  
in the plane of the complex variable ~ goes along the real axis and passes below the pole at the point ~ = - k  
and above the pole at point ~ = k. Wi th  this choice of the integration contour, the radiation conditions are 

automatically satisfied. 
Analysis of the behavior of the integral (19) as x --~ 4-cc yields b(~ • = -iCF~(T-k)/G'(k), and, therefore, 

i B(• (20) 
n = l  

The hydrodynamic coefficients are determined from the formula 

1 

= ./e(")(x, 
- 1  

which, in view of (19), gives 

C n m  = R . I C n r n - ~ C u n ,  Cn R : ~ v.p. G----~--~ (21) 

I 1 F F F / F  
C n m  - -  2 G t ( k )  [~n ( -k ) '@m( lg )  2t- ~)n ( ] r  �9 

One can see that  Cnm = Cmn if n and m ~> 1 and C,,m = 0 if n + m an odd number. In the case of the fluid of 
finite depth, by deformation the integration path  in (21), the integral understood in the sense of the Cauchy 
principle value can be represented in the form of a series tha t  is convenient for numerieal calculations. 

N u m e r i c a l  R e s u l t s .  In numerical calculation of system (18), we retain 60 even and 60 odd modes. 
A comparison of the numerical rdsults for the dimensionless ampli tude of bending stresses obtained using the 
proposed model with results of the calculations in [4] for the experimental  conditions of [1], is presented in 
Fig. 2. The  curves obtained by the normal mode method are shown by the solid curve and the results of 
[4] are shown by tile dashed curve. For convenience of comparison with experimental data,  the results are 
presented in the same form as in [1]. Here .hi = IM(x)l/(2Apadg) = (/3a/d)tW'(x)l, where IM(x)I is the 
amplitude of bending stresses, and T is the period of the incident wave. One can see that  for sufficiently 
long waves (the period T = 1.429 see corresponds to a wavelength of 3.1 m, and tim period T = 2.875 sec 
corresponds to a wavelength of 8.6 m), the numerical results obtained by the two different methods  practically 
coincide. However, for short waves (the period T = 0.7 sec corresponds to a wavelength of 0.765 m), there 
is a considerable discrepancy. We should note that for short waves, different sources give different results. 
The  experimental value of the maximum dimensionless ampli tude of flexural stresses is approximately 0.5, 
and its numerical values are 1.2 in [1], 0.38 in [4], and 0.78 in the present paper. For long waves, almost all 
numerical results of [1, 4] are in good agreement with the experiment.  

L o n g - W a v e  A p p r o x i m a t i o n .  We consider the boundary-value problem (5)-(12) subject to tim 

following conditions: k << 1, f3 = O(1), H0 = O(1), ~/= O(k2), and d/a = o(1). In the basic approximation, 
we assume that  the plate has a weak effect on the wave motion, if the wavelength of the incident wave is 
sufficiently long. Then, from Eq. (9) we can eliminate the term ?,~(x, 0), which has order of magnitude O(k 2) 
as k ~ 0, and obtain the following solution of the reduced equat ion subject to boundary conditions (10): 

W(x) ~ N[exp (ikx) + k2Wl(x) + ik3W2(x)], (22) 

where N = (1 - a + ilk4) -1. The functions Wj(x) (j = 1 and 2) sa t i s~  the equation 

da~Vj 
+ (1 -  )wj = 0 (txl < 1) (23)  
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and the boundary conditions 

d2iVl d 3 W l  
d x  2 - exp(• d x  3 - O; (24) 

d 2 ~V2 d 3 IV2 
- 0, - exp ( •  (x = -4-1). (25) 

d x  2 d x  3 

It follows from the solutions of the boundary-value problems (23), (24) and (23), (25) that for small/3, the 
functions Wt(x) and W2(x) are localized in neighborhoods of the ends of the beam, and the sizes of these 
neighborhoods are 0(/31/4 ) in order of magnitude. 

Substituting (22)  into (8), we obtain a boundary-value problem for the correction to the velocity 
potential due to the presence of the plate. In general, approximation (22) is valid if this correction is small in 
absolute value for Ix] < 1. Analysis of the long-wave approximation shows that  this condition is satisfied if" 
and only if a +/3k 4 << 1. This inequality takes into account that tVt = 0(/31/2) and W2 = 0(/33/4) a s  /3  - -~  0. 

We note that  the long-wave approximation allows us to obtain solutions for the plate deflection and the 
stresses in analytical form. Figure 3 shows the dimensionless amplitudes of the bending moments obtained 
by the long-wave approximation (dashed curves) and the normal mode method (solid curves) for the same 
parameters of the incident wave as in Fig. 2. One can see that  for short waves, tim long-wave approximation 
gives an incorrect distribution of bending moments along the plate and their amplitudes. For incident waves 
of moderate wavelength, the long-wave approximation gives a simplified description. However for waves 
whose wavelength is comparable with the length of the plate, the approximate analytical solution is in good 
agreement with the numerical solution obtained within the framework of the full linear model. 

The results of this paper show that  the long-wave approximation can describe the hydroelastic behavior 
of floating plates for incident waves whose wavelength is greater than the total length of the plate. 

This work was supported by the Russian Foundation for Fundamental  Research (Grants Nos. 96-15- 
96882 and 97-01-00897). 
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